黄连-黄芩抑制mPTP/NLRP3细胞焦亡路径改善CpG1826诱导小鼠细胞因子风暴继发性肺损伤Coptidis Rhizoma-Scutellariae Radix alleviates CpG1826-induced cytokine storm secondary lung injury in mice by inhibiting mPTP/NLRP3 pyroptosis pathway
钟青芮,黄虹凯,兰悦嘉,王欢,曾勇,吴嘉思
ZHONG Qing-rui,HUANG Hong-kai,LAN Yue-jia,WANG Huan,ZENG Yong,WU Jia-si
摘要(Abstract):
该研究旨在探究黄连-黄芩对CpG1826诱导小鼠细胞因子风暴继发性肺损伤(CSSLI)的治疗作用,揭示黄连-黄芩主要效应成分黄连碱和汉黄芩素抑制线粒体膜通透性转换孔(mPTP)/核苷酸结合寡聚结构域样受体蛋白3(NLRP3)炎症小体细胞焦亡路径,并减轻CSSLI的潜在分子机制。体内实验通过CpG1826诱导复制CSSLI小鼠模型,结合肺组织湿干比(W/D)评价肺肿胀程度,苏木素-伊红(HE)染色评价小鼠肺损伤程度,透射电镜(TEM)观察肺组织超微结构,酶联免疫吸附测定(ELISA)检测肺泡灌洗液中白细胞介素(IL)-1β、高迁移率族蛋白B1(HMGB1)、IL-18、IL-1α水平,发现黄连-黄芩水煎液较单味药显著降低肺水肿、肺损伤程度和肺泡灌洗液中相关细胞因子浓度,从而改善CSSLI。体外实验通过小鼠肺泡巨噬细胞(MH-S)建立CpG1826诱导的CSSLI模型,通过钙黄绿素淬灭筛选黄连-黄芩中抑制mPTP通道开启效果最优单体成分,发现黄连碱(5、10、20μmol·L~(-1))和汉黄芩素(10、20、40μmol·L~(-1))明显抑制mPTP通道的开启,作用效果最优且呈剂量依赖性;且黄连碱与汉黄芩素通过抑制mPTP通道开放,减少线粒体DNA(mtDNA)的释放和活性氧(ROS)累积,有效逆转CpG1826导致的线粒体膜电位(MMP)降低。进一步研究发现,2个单体成分能抑制细胞焦亡过程,下调NLRP3/半胱天冬蛋白酶-1(Caspase-1)/消皮素D(GSDMD)通路相关蛋白表达。综上所述,黄连-黄芩能改善CpG1826诱导的小鼠CSSLI,与其抑制mPTP/NLRP3细胞焦亡路径有关,为该药的临床应用及开发提供了科学依据。
This study aims to investigate the therapeutic effects of the Coptidis Rhizoma-Scutellariae Radix on cytokine storm secondary lung injury(CSSLI) induced by CpG1826 in mice, and to elucidate the potential molecular mechanisms by which its major active components, i.e., coptisine and wogonin, alleviate CSSLI by inhibiting the mitochondrial permeability transition pore(mPTP)/nucleotide-binding oligomerization domain-like receptor protein 3(NLRP3) inflammasome pyroptosis pathway. In vivo, a mouse model of CSSLI was established by CpG1826 induction. Pulmonary edema was assessed by lung wet-to-dry weight ratio(W/D), lung injury was evaluated by hematoxylin-eosin(HE) staining, and ultrastructural changes in lung tissue were observed by transmission electron microscopy(TEM). The levels of interleukin(IL)-1β, high mobility group box 1 protein(HMGB1), IL-18, and IL-1α in bronchoalveolar lavage fluid were measured by enzyme-linked immunosorbent assay(ELISA). The results showed that the decoction of the Coptidis Rhizoma-Scutellariae Radix significantly reduced pulmonary edema, alleviated lung injury, and decreased the concentrations of related cytokines in BALF more effectively than either single herb alone, thereby improving CSSLI. In vitro, a CpG1826-induced CSSLI model was established in mouse alveolar macrophage MH-S cells. Calcein-AM quenching was used to screen for the most effective monomer components from the herb pair in inhibiting mPTP opening. Coptisine(5, 10, 20 μmol·L~(-1)) and wogonin(10, 20, 40 μmol·L~(-1)) markedly inhibited mPTP opening, with optimal effects and a clear dose-dependent pattern. These components suppressed mPTP opening, thereby reducing the release of mitochondrial DNA(mtDNA) and the accumulation of reactive oxygen species(ROS), effectively reversing the CpG1826-induced decrease in mitochondrial membrane potential(MMP). Further studies revealed that both coptisine and wogonin inhibited pyroptosis and downregulated the expression of key proteins in the NLRP3/Caspase-1/gasdermin D(GSDMD) pathway. In conclusion, the Coptidis Rhizoma-Scutellariae Radix improves CpG1826-induced CSSLI in mice, and this effect is associated with the inhibition of the mPTP/NLRP3 pyroptosis pathway, providing scientific evidence for its clinical application and further development.
关键词(KeyWords):
黄连-黄芩;CpG1826;细胞因子风暴继发性肺损伤;线粒体膜通透性转换孔(mPTP);细胞焦亡
Coptidis Rhizoma-Scutellariae Radix;CpG1826;cytokine storm secondary lung injury;mitochondrial permeability transition pore(mPTP);pyroptosis
基金项目(Foundation): 国家自然科学基金青年科学基金项目(82104491);; 四川省自然科学基金面上项目(2023NSFSC0674)
作者(Author):
钟青芮,黄虹凯,兰悦嘉,王欢,曾勇,吴嘉思
ZHONG Qing-rui,HUANG Hong-kai,LAN Yue-jia,WANG Huan,ZENG Yong,WU Jia-si
DOI: 10.19540/j.cnki.cjcmm.20250428.503
参考文献(References):
- [1] FAJGENBAUM D C,JUNE C H.Cytokine storm[J].N Engl J Med,2020,383(23):2255.
- [2] KARKI R,KANNEGANTI T D.The cytokine storm:molecular mechanisms and therapeutic prospects[J].Trends Immunol,2021,42(8):681.
- [3] SEFIK E,ISRAELOW B,MIRZA H,et al.A humanized mouse model of chronic COVID-19[J].Nat Biotechnol,2022,40(6):906.
- [4] HU B,HUANG S,YIN L.The cytokine storm and COVID-19[J].J Med Virol,2021,93(1):250.
- [5] XIAN H,LIU Y,RUNDBERG N A,et al.Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation[J].Immunity,2021,54(7):1463.
- [6] HOUGH R,ISLAM M,GUSAROVA G,et al.Endothelial mitochondria determine rapid barrier failure in chemical lung injury[J].JCI Insight,2019,4(3):e124329.
- [7] YUE L,YAO H.Mitochondrial dysfunction in inflammatory responses and cellular senescence:pathogenesis and pharmacological targets for chronic lung diseases[J].Br J Pharmacol,2016,173(15):2305.
- [8] ZHAO M,WANG Y,LI L,et al.Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance[J].Theranostics,2021,11(4):1845.
- [9] BERNARDI P,RASOLA A,FORTE M,et al.The mitochondrial permeability transition pore:channel formation by F-ATP synthase,integration in signal transduction,and role in pathophysiology[J].Physiol Rev,2015,95(4):1111.
- [10] XIAN H,WATARI K,SANCHEZ-LOPEZ E,et al.Oxidized DNA fragments exit mitochondria via mPTP-and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling[J].Immunity,2022,55(8):1370.
- [11] ZONG Y,LI H,LIAO P,et al.Mitochondrial dysfunction:mechanisms and advances in therapy[J].Signal Transduct Target Ther,2024,9(1):124.
- [12] LONG G,GONG R,WANG Q,et al.Role of released mitochondrial DNA in acute lung injury[J].Front Immunol,2022,13:973089.
- [13] 柯秀梅,张立胜,李欣,等.黄芩-黄连合煎液中络合物表征及其体外抗菌活性[J].中成药,2020,42(8):2192.
- [14] 张红杰,陈常莲,华诗培,等.“黄芩-黄连”药对研究进展[J].江西中医药大学学报,2022,34(3):120.
- [15] 张红杰,苏丹,朱根华,等.黄芩-黄连抗神经炎症的配伍优势及其调控TLR4/MyD88/NF-κB信号通路的潜在靶点[J].中国实验方剂学杂志,2022,28(22):58.
- [16] 魏悦.基于氧化应激及炎症探究黄芩黄连药对改善非酒精性脂肪性肝炎的作用机制[D].南昌:江西中医药大学,2022.
- [17] 章常华,魏悦,操映倩,等.黄芩黄连药对改善2型糖尿病KK-ay小鼠肝组织炎症作用与TRAF6,IL-1α,NF-κB2,RSK1,RSK2蛋白表达下调相关[J].时珍国医国药,2021,32(1):61.
- [18] 侯学智,张振秋,尤春雪,等.HPLC法测定黄连,黄芩药对提取物中11个成分的含量[J].药物分析杂志,2013,33(1):57.
- [19] WU J,HU Y,XIANG L,et al.San-Huang-Xie-Xin-Tang constituents exert drug-drug interaction of mutual reinforcement at both pharmacodynamics and pharmacokinetic level:a review[J].Front Pharmacol,2016,7:448.
- [20] 尹明星,曹艳,施春阳,等.中药防治细胞因子风暴的研究进展[J].中草药,2020,51(5):1089.
- [21] JO H G,PARK C,LEE H,et al.Inhibition of oxidative stress induced-cytotoxicity by coptisine in V79-4 Chinese hamster lung fibroblasts through the induction of Nrf-2 mediated HO-1 expression[J].Genes Genom,2020,43(1):17.
- [22] 王颖,徐中华,延李科,等.小檗碱介导BMAL1:CLOCK复合体调控糖脂代谢改善脂肪胰岛素抵抗的效应机制[J].中国中药杂志,2024,49(17):4586.
- [23] WU J,LUO Y,JIANG Q,et al.Coptisine from Coptis chinensis blocks NLRP3 inflammasome activation by inhibiting caspase-1[J].Pharmacol Res,2019,147:104348.
- [24] XIANG L,HU Y,WU J,et al.Semi-mechanism-based pharmacodynamic model for the anti-inflammatory effect of baicalein in LPS-stimulated RAW264.7 macrophages[J].Front Pharmacol,2018,9:793.
- [25] 吴嘉思,黄文戈,罗煜,等.黄连异喹啉生物碱盐酸巴马汀对NLRP3炎症小体通路调控机制研究[J].中药药理与临床,2018,34(5):4.
- [26] WANG H,LAN Y,LUO L,et al.The Scutellaria-Coptis herb couple and its active small-molecule ingredient wogonoside alleviate cytokine storm by regulating the CD39/NLRP3/GSDMD signaling pathway[J].J Ethnopharmacol,2024,329:118155.
- [27] SHIMAZU H,MUNAKATA S,TASHIRO Y,et al.Pharmacological targeting of plasmin prevents lethality in a murine model of macrophage activation syndrome[J].Blood,2017,130(1):59.
- [28] WU D,ZHANG H,WU Q,et al.Sestrin 2 protects against LPS-induced acute lung injury by inducing mitophagy in alveolar macrophages[J].Life Sci,2021,267:118941.
- [29] WU J,XIONG X,HU X.Electroacupuncture alleviates lung injury in CpG1826-challenged mice via modulating CD39-NLRP3 pathway[J].J Inflamm Res,2023,16:3245.
- [30] GUO L.F-ATP synthase inhibitory factor 1 and mitochondria-organelle interactions:new insight and implications[J].Pharmacol Res,2024,208:107393.
- [31] BAI J,XIE N,HOU Y,et al.The enhanced mitochondrial dysfunction by cantleyoside confines inflammatory response and promotes apoptosis of human HFLS-RA cell line via AMPK/SIRT 1/NF-κB pathway activation[J].Biomed Pharmacother,2022,149:12847.
- [32] PERELMAN A,WACHTEL C,COHEN M,et al.Inhibition of oxidative stress induced-cytotoxicity by coptisine in V79-4 Chinese hamster lung fibroblasts through the induction of Nrf-2 mediated HO-1 expression[J].Genes Genom,2012,3(11):e430.
- [33] BEHRENS E M,CANNA S W,SLADE K,et al.Repeated TLR9 stimulation results in macrophage activation syndrome-like disease in mice[J].J Clin Invest,2011,121(6):2264.
- [34] 张娈娈,訾亚楠,张业鹏,等.参附注射液通过调节HIF-1α减轻脓毒症肺损伤[J].中国中药杂志,2023,48(23):6492.
- [35] 秦丽,栾振先,李敏,等.黄芪-丹参通过PI3K/Akt/mTOR通路调控自噬改善大鼠急性肺损伤[J].中国中药杂志,2024,49(12):3295.
- [36] HE X,WANG J,SUN L,et al.Wogonin attenuates inflammation and oxidative stress in lipopolysaccharide-induced mastitis by inhibiting Akt/NF-κB pathway and activating the Nrf2/HO-1 signaling[J].Cell Stress Chaperones,2023,28(6):989.
- [37] RAO Z,ZHU Y,YANG P,et al.Pyroptosis in inflammatory diseases and cancer[J].Theranostics,2022,12(9):4310.
- [38] LI S,SUN Y,SONG M,et al.NLRP3/caspase-1/GSDMD-mediated pyroptosis exerts a crucial role in astrocyte pathological injury in mouse model of depression[J].JCI Insight,2021,6(23):e146852.
- [39] AI G,HUANG Z,CHENG J,et al.Gut microbiota-mediated transformation of coptisine into a novel metabolite 8-oxocoptisine:insight into its superior anti-colitis effect[J].Front Pharmacol,2021,12:639020.
- [40] CHENG Z,TU J,WANG K,et al.Wogonin alleviates NLRP3 inflammasome activation after cerebral ischemia-reperfusion injury by regulating AMPK/SIRT1[J].Brain Res Bull,2024,207:110886.
- [41] TIAN R,LIU X,JING L,et al.Huang-Lian-Jie-Du Decoction attenuates cognitive dysfunction of rats with type 2 diabetes by regulating autophagy and NLRP3 inflammasome activation[J].J Ethnopharmacol,2022,292:115196.
- [42] 吴嘉思,兰悦嘉,王俊,等.表小檗碱调控CD39-NLRP3-GSDMD焦亡路径改善脓毒症肺损伤的机制研究[J].中草药,2023,54(1):10.
- [43] 兰悦嘉,孟宪丽,吴嘉思.黄芩素调控NLRP3/Caspase-1/GSDMD通路介导的焦亡减轻小鼠急性肺损伤作用[J].中草药,2023,54(20):6694.