人参皂苷Re对帕金森病果蝇模型的脑神经保护作用机制Neuroprotective effect of ginsenoside Re on drosophila model of Parkinson′s disease
徐燕,孟雪,赵文学,刘冬光,朱建国,姚茹,姚景春,张贵民
XU Yan,MENG Xue,ZHAO Wen-xue,LIU Dong-guang,ZHU Jian-guo,YAO Ru,YAO Jing-chun,ZHANG Gui-min
摘要(Abstract):
探究人参皂苷Re(ginsenoside Re, GS-Re)对鱼藤酮(rotenone, Rot)诱导果蝇帕金森病(Parkinson′s disease, PD)模型脑神经的保护作用机制。利用Rot建立果蝇PD模型,对其进行分组给药(0.1、0.4、1.6 mmol·L~(-1 )GS-Re; 80μmol·L~(-1 )L-dopa),通过功能表型实验检测果蝇寿命及爬行能力,ELISA检测果蝇大脑抗氧化活力(CAT、MDA、ROS、SOD含量)、多巴胺(dopamine, DA)含量及线粒体功能(ATP含量、NDUFB8Ⅰ活性、SDHBⅡ活性),免疫荧光检测果蝇大脑DA神经元数量;Western blot检测果蝇大脑NDUFB8Ⅰ、SDHBⅡ、Cyt C、Nrf2、HO-1、Bcl-2/Bax、cleaved caspase-3/caspase-3表达水平的变化。结果显示,与正常组相比,以475μmol·L~(-1) Rot(IC_(50))建立果蝇PD模型,果蝇存活率显著下降,并表现出明显的运动功能障碍,果蝇脑内DA含量及神经元数量均显著降低,脑内ROS生成量、MDA含量升高,SOD含量、CAT含量下降,ATP含量、NDUFB8Ⅰ活性、SDHBⅡ活性显著下降,NDUFB8Ⅰ、SDHBⅡ、Bcl-2/Bax表达显著下调,Cyt C从线粒体向胞浆大量释放,Nrf2核转移降低,cleaved caspase-3/caspase-3表达显著上调,给予GS-Re(0.1、0.4、1.6 mmol·L~(-1))干预后,显著提高了PD果蝇的存活率,改善了果蝇的运动功能障碍,增加了脑内DA含量,减轻了DA神经元的丢失,降低脑内ROS生成量及MDA含量,增加SOD含量及CAT含量,提高脑内抗氧化活力,维护了线粒体功能稳态,表现为ATP含量、NDUFB8Ⅰ活性、SDHBⅡ活性显著增加,NDUFB8Ⅰ、SDHBⅡ、Bcl-2/Bax表达显著上调,显著降低胞浆中Cyt C的表达水平,Nrf2核转移增加,cleaved caspase-3/caspase-3表达显著下调。综上表明,GS-Re可明显改善Rot诱导的果蝇脑神经毒性作用,其机制可能是GS-Re通过维护线粒体功能稳态,激活Keap1-Nrf2-ARE信号通路,提高脑神经元抗氧化能力,进而抑制线粒体介导的caspase-3信号通路,抑制神经元细胞的凋亡,从而发挥神经保护作用。
This study aims to explore the neuroprotective mechanism of ginsenoside Re(GS-Re) on drosophila model of Parkinson′s disease(PD) induced by rotenone(Rot). To be specific, Rot was used to induce PD in drosophilas. Then the drosophilas were grouped and respectively treated(GS-Re: 0.1, 0.4, 1.6 mmol·L~(-1); L-dopa: 80 μmol·L~(-1)). Life span and crawling ability of drosophilas were determined. The brain antioxidant activity [content of catalase(CAT), malondialdehyde(MDA), reactive oxygen species(ROS), superoxide dismutase(SOD)], dopamine(DA) content, and mitochondrial function [content of adenosine triphosphate(ATP), NADH:ubiquinone oxidoreductase subunit B8(NDUFB8) Ⅰ activity, succinate dehydrogenase complex, subunit B(SDHB) Ⅱ activity] were detected by enzyme-linked immunosorbent assay(ELISA). The number of DA neurons in the brains of drosophilas was measured with the immunofluorescence method. The levels of NDUFB8 Ⅰ, SDHB Ⅱ, cytochrome C(Cyt C), nuclear factor-E2-related factor 2(Nrf2), heme oxygenase-1(HO-1), B-cell lymphoma/leukemia 2(Bcl-2)/Bcl-2-assaciated X protein(Bax), and cleaved caspase-3/caspase-3 in the brain were detected by Western blot. The results showed that model group [475 μmol·L~(-1) Rot(IC_(50))] demonstrated significantly low survival rate, obvious dyskinesia, small number of neurons and low DA content in the brain, high ROS level and MDA content, low content of SOD and CAT, significantly low ATP content, NDUFB8 Ⅰ activity, and SDHB Ⅱ activity, significantly low expression of NDUFB8 Ⅰ, SDHB Ⅱ, and Bcl-2/Bax, large amount of Cyt C released from mitochondria to cytoplasm, low nuclear transfer of Nrf2, and significantly high expression of cleaved caspase-3/caspase-3 compared with the control group. GS-Re(0.1, 0.4, and 1.6 mmol·L~(-1)) significantly improved the survival rate of PD drosophilas, alleviated the dyskinesia, increased DA content, reduced the loss of DA neurons, ROS level, and MDA content in brain, improved content of SOD and CAT and antioxidant activity in brain, maintained mitochondrial homeostasis(significantly increased ATP content and activity of NDUFB8 Ⅰ and SDHB Ⅱ, significantly up-regulated expression of NDUFB8 Ⅰ, SDHB Ⅱ, and Bcl-2/Bax), significantly reduced the expression of Cyt C, increased the nuclear transfer of Nrf2, and down-regulated the expression of cleaved caspase-3/caspase-3. In conclusion, GS-Re can significantly relieve the Rot-induced cerebral neurotoxicity in drosophilas. The mechanism may be that GS-Re activates Keap1-Nrf2-ARE signaling pathway by maintaining mitochondrial homeostasis, improves antioxidant capacity of brain neurons, then inhibits mitochondria-mediated caspase-3 signaling pathway, and the apoptosis of neuronal cells, thereby exerting the neuroprotective effect.
关键词(KeyWords):
人参皂苷Re;帕金森病;果蝇;脑神经;氧化应激;线粒体稳态
ginsenoside Re;Parkinson′s disease;drosophila;cerebral neuron;oxidative stress;mitochondrial homeostasis
基金项目(Foundation): 山东省重大科技创新工程项目(2021CXGC010508);; 山东省自然科学基金项目(ZR2021QH289);; 国家重点研发计划项目(2019YFC1711205,2019YFC1711200)
作者(Author):
徐燕,孟雪,赵文学,刘冬光,朱建国,姚茹,姚景春,张贵民
XU Yan,MENG Xue,ZHAO Wen-xue,LIU Dong-guang,ZHU Jian-guo,YAO Ru,YAO Jing-chun,ZHANG Gui-min
DOI: 10.19540/j.cnki.cjcmm.20230103.705
参考文献(References):
- [1] DE RIJK M C,LAUNER L J,BERGER K,et al.Prevalence of Parkinson′s disease in Europe:a collaborative study of population-based cohorts[J].Neurology,2000,54 (11):21.
- [2] ZASSO J,AHMED M,CUTARELLI A,et al.Inducible alpha-synuclein expression affects human neural stem cells′behavior[J].Stem Cells Dev,2018,27 (14) :985.
- [3] BOSE A,BEAL M F.Mitochondrial dysfunction in Parkinson′s disease[J].J Neurochem,2016,139 (1) :216.
- [4] GAUTIER C A,CORTI O,BRICE A.Mitochondrial dysfunctions in Parkinson′s disease[J].Rev Neurol (Paris),2014,170:339.
- [5] 杨智明,李煦照,卢芳,等.帕金森病的线粒体发病机制研究进展[J].中国老年学杂志,2014,34 (21):6233.
- [6] 李文蒿,高晗,李文涛.中医药治疗帕金森病的研究进展[J].中西医结合心脑血管病杂志,2020,18(8):1244.
- [7] 王佳彬,沈晓明,马云枝,等.帕金森病中西医研究进展[J].中国实验方剂学杂志,2022,28(1):241.
- [8] 周厚广,鲍远程.中医药治疗帕金森病的研究进展[J].中西医结合心脑血管病杂志,2004,2 (10) :593.
- [9] 王彤宇,刘建杰.帕金森病的治疗进展[J].医学综述,2009,15 (15) :2327.
- [10] 徐琲琲.人参皂苷Re对帕金森病模型小鼠脑内多巴胺能神经元的保护作用及机理初探[D].沈阳:沈阳药科大学,2004.
- [11] 王茜,郑桓,张作凤,等.人参皂甙Rg1通过P38信号通路影响帕金森病MPTP模型小鼠黑质COX-2的表达[J].南方医科大学学报,2008,28(9):1594.
- [12] WANG J,XU H M,YANG H D,et al.Rg1 reduces nigral iron levels of MPTP-treated C57BL6 mice by regulating certain iron transport proteins[J].Neurochem Int,2009,54 (1) :43.
- [13] KUMAR P P,PRASHANTH K.Diet with low molecular weight chitosan exerts neuromodulation in rotenone induced drosophila model of Parkinson′s disease[J].Food Chem Toxicol,2020,146 (4):111860.
- [14] WANG G,PAN J,CHEN S D.Kinases and kinase signaling pathways:potential therapeutic targets in Parkinson′s disease[J].Prog Neurobiol,2012,98 (2) :207.
- [15] 燕颍,顾怀宇,徐汉虹,等.印楝素对果蝇厌恶性味觉记忆的诱导及多巴胺能神经元的影响[J].华南农业大学学报,2017,38(4):12.
- [16] 丁秋然,张宏,洛方舟,等.紫草提取物对果蝇肠道损伤的保护作用[J].中成药,2016,38(10):2105.
- [17] 吕宝北,赵鹏翔,张鑫,等.线粒体呼吸链复合物I结构和功能的研究进展[J].现代生物医学进展,2018,18(2):356.
- [18] 崔铁忠,李银霞,王燕,等.线粒体电子传递链复合物Ⅲ的组装及其研究进展[J].医学研究与教育,2016,33(1):51.
- [19] TROHA K,BUCHON N.Methods for the study of innate immunity in Drosophila melanogaster[J].Wiley Interdiscip Rev Dev Biol,2019,8(5):e344.
- [20] DAVID S,VIRENDER S,ROBERT C,et al.Developmental organization of central neurons in the adult Drosophila ventral nervous system[J].J Comp Neurol,2019,527(15):2573.
- [21] MANIYATH S P,SOLAIAPPAN N,RATHINASAMY M.Neurobehavioural changes in a hemiparkinsonian rat model induced by rotenone[J].J Clin Diagn Res,2017,11 (3) :AF01.
- [22] SUBARAJA M,VANISREE A J.Rotenone causing dysfunctional mitochondria and lysosomes in cerebral ganglions of Lumbricus terrestris degenerate giant fibers and neuromuscular junctions[J].Chemosphere,2016,152:468.
- [23] XUE X,BIAN J S.Chapter ten-neuroprotective effects of hydrogen sulfide in Parkinson′s disease animal models:methods and protocols[J].Methods Enzymol,2015,554:169.
- [24] XIONG N,LONG X,XIONG J,et al.Mitochondrial complex Ⅰ inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson′s disease models[J].Crit Rev Toxicol,2012,42(7):613.
- [25] JOHNSON M E,BOBROVSKAYA L.An update on the rotenone models of Parkinson′s disease:their ability to reproduce the features of clinical disease and model gene-environment interactions[J].Neurotoxicology,2015,46:101.
- [26] 吉海杰,仝立国,白崇智,等.黄芩苷对鱼藤酮致PC12细胞损伤的保护作用研究[J].中国中药杂志,2014,39(15):2947.
- 人参皂苷Re
- 帕金森病
- 果蝇
- 脑神经
- 氧化应激
- 线粒体稳态
ginsenoside Re - Parkinson′s disease
- drosophila
- cerebral neuron
- oxidative stress
- mitochondrial homeostasis
- 徐燕
- 孟雪
- 赵文学
- 刘冬光
- 朱建国
- 姚茹
- 姚景春
- 张贵民
XU Yan - MENG Xue
- ZHAO Wen-xue
- LIU Dong-guang
- ZHU Jian-guo
- YAO Ru
- YAO Jing-chun
- ZHANG Gui-min
- 徐燕
- 孟雪
- 赵文学
- 刘冬光
- 朱建国
- 姚茹
- 姚景春
- 张贵民
XU Yan - MENG Xue
- ZHAO Wen-xue
- LIU Dong-guang
- ZHU Jian-guo
- YAO Ru
- YAO Jing-chun
- ZHANG Gui-min