基于气味变化规律采用电子鼻构建黄精霉变的快速判别模型Establishment of a fast discriminant model with electronic nose for Polygonati Rhizoma mildew based on odor variation
于淑琳,拱健婷,李莉,关佳莉,翟恩爱,欧阳少琴,邹慧琴,闫永红
YU Shu-lin,GONG Jian-ting,LI Li,GUAN Jia-li,ZHAI En-ai,OUYANG Shao-qin,ZOU Hui-qin,YAN Yong-hong
摘要(Abstract):
通过对不同霉变程度的黄精进行气味指纹分析,探究黄精霉变过程中的气味变化规律与其霉变程度的关系,根据电子鼻的响应强度建立判别黄精是否霉变的快速判别模型。运用α-FOX3000电子鼻对不同霉变程度的黄精进行气味指纹分析,利用雷达图解析电子鼻挥发性化合物的主要贡献成分,通过偏最小二乘法判别分析(PLS-DA)、最邻近分类法(KNN)、序列最小最优化算法(SMO)、随机森林(random forest)、朴素贝叶斯(naive Bayes)对特征数据进行处理。根据电子鼻的雷达图可以得出,随着黄精样品的霉变程度不断加深,传感器T70/2、T30/1、P10/2的响应值一直在增强,说明霉变后的黄精产生了烷烃类和芳香族类化合物;根据PLS-DA,3类黄精样品可以很好地被区分,对传感器进行变量重要性分析,筛选出对分类贡献较大的传感器有5根:T70/2、T30/1、PA/2、P10/1、P40/1;在KNN、SMO、random forest、native Bayes 4个分类模型中,4个模型的分类准确率均达到90%以上,其中KNN为最佳分类模型,准确率为97.2%。霉变前后的黄精具有明显气味变化,产生了不同的挥发性有机物,这种差异可以被电子鼻识别,并建立了快速判别模型,为后续黄精霉变过程中挥发性物质种类和含量的研究提供方法参考。
The odor fingerprint of Pollygonati Rhizoma samples with different mildewing degrees was analyzed and the relationship between the odor variation and the mildewing degree was explored. A fast discriminant model was established according to the response intensity of electronic nose. The α-FOX3000 electronic nose was applied to analyze the odor fingerprint of Pollygonati Rhizoma samples with different mildewing degrees and the radar map was used to analyze the main contributors among the volatile organic compounds. The feature data were processed and analyzed by partial least squares discriminant analysis(PLS-DA), K-nearest neighbor(KNN), sequential minimal optimization(SMO), random forest(RF) and naive Bayes(NB), respectively. According to the radar map of the electronic nose, the response values of three sensors, namely T70/2, T30/1, and P10/2, increased with the mildewing, indicating that the Pollygonati Rhizoma produced alkanes and aromatic compounds after the mildewing. According to PLS-DA model, Pollygonati Rhizoma samples of three mildewing degrees could be well distinguished in three areas. Afterwards, the variable importance analysis of the sensors was carried out and then five sensors that contributed a lot to the classification were screened out: T70/2, T30/1, PA/2, P10/1 and P40/1. The classification accuracy of all the four models(KNN, SMO, RF, and NB) was above 90%, and KNN was most accurate(accuracy: 97.2%). Different volatile organic compounds were produced after the mildewing of Pollygonati Rhizoma, and they could be detected by electronic nose, which laid a foundation for the establishment of a rapid discrimination model for mildewed Pollygonati Rhizoma. This paper shed lights on further research on change pattern and quick detection of volatile organic compounds in moldy Chinese herbal medicines.
关键词(KeyWords):
黄精;霉变;电子鼻;气味;快速判别模型;气味指纹图谱
Pollygonati Rhizoma;mildew;electronic nose;odor;fast discriminant model;odor fingerprint
基金项目(Foundation): 北京市中医药研究所市财政专项(YJS-2022-15)
作者(Author):
于淑琳,拱健婷,李莉,关佳莉,翟恩爱,欧阳少琴,邹慧琴,闫永红
YU Shu-lin,GONG Jian-ting,LI Li,GUAN Jia-li,ZHAI En-ai,OUYANG Shao-qin,ZOU Hui-qin,YAN Yong-hong
DOI: 10.19540/j.cnki.cjcmm.20230115.101
参考文献(References):
- [1] 陶弘景.名医别录.第1卷[M].北京:人民卫生出版社,1986.
- [2] 国家药典委员会.中华人民共和国药典.一部[M].北京:中国医药科技出版社,2020.
- [3] 国家卫生健康委关于印发《按照传统既是食品又是中药材的物质目录管理规定》的通知国卫食品发[2021]36号[J].中华人民共和国国家卫生健康委员会公报,2021(11):7.
- [4] 陶爱恩,赵飞亚,钱金栿,等.黄精属植物治疗肾精亏虚相关疾病的本草学和药理作用与药效物质研究进展[J].中草药,2021,52(5):1536.
- [5] 周玉,汪萍,杨建课.黄精多糖抗肿瘤作用的研究进展[J].湖北中医杂志,2022,44(7):63.
- [6] 韦震,宋洪波,安凤平,等.黄精多糖对急性抑郁小鼠模型的改善作用及机制[J].食品工业科技,2022,43(6):351.
- [7] 陈杨杨,胡慧玲,奉关妹,等.多花黄精炮制前后对游泳力竭小鼠抗疲劳抗氧化的影响[J].中药药理与临床,2021,37(2):92.
- [8] 麦嘉乐,李建良,肖嘉聪,等.基于网络药理学探析黄精抗骨质疏松的机制及验证[J].中国实验方剂学杂志,2022,28(12):210.
- [9] 胡舒婷.黄精的营养成分研究与产品试制[D].杨凌:西北农林科技大学,2022.
- [10] 张娜娜,潘慧云,侯芯芯,等.黄精研究现状与可持续发展探析[J].安徽农学通报,2022,28(10):24.
- [11] 曹夏.不同贮藏条件对黄精药材品质的影响[D].杨凌:西北农林科技大学,2015.
- [12] 杨青山,张倩倩,周建理.霉变药材的微性状鉴定[J].安徽中医药大学学报,2016,35(5):86.
- [13] 冯洁,刘云宏,王庆庆,等.基于高光谱成像技术的金银花霉变检测模型[J].食品与机械,2018,34(8):60.
- [14] AGRIOPOULOU S,STAMATELOPOULOU E,VARZAKAS T.Advances in analysis and detection of major mycotoxins in foods[J].Foods,2020,9(4):518.
- [15] HEIDARBEIGI K,MOHTASEBI S S,FOROUGHIRAD A,et al.Detection of adulteration in saffron samples using electronic nose[J].Int J Food Prop,2015,18(7):1391.
- [16] 夏成凯,宋芊芊,方成武.基于电子鼻技术区分不同产地的牡丹皮药材[J].中国现代应用药学,2019,36(21):2633.
- [17] OH J,KIM S H,LEE M J,et al.Machine learning-based discrimination of indoor pollutants using an oxide gas sensor array:high endurance against ambient humidity and temperature[J].Sensor Actuat B-Chem,2022,364:131894.
- [18] MU C,SHENG Y,WANG Q,et al.Potential compound from herbal food of Rhizoma Polygonati for treatment of COVID-19 analyzed by network pharmacology:viral and cancer signaling mechanisms[J].J Funct Foods,2021,77:104149.
- [19] 许文娟,韩芳,赵晗,等.电子鼻结合主成分分析法快速鉴别掺假牛肉[J].肉类工业,2021(10):33.
- [20] 陈远涛,熊忆舟,薛莹莹,等.基于深度学习的电子鼻食品新鲜度检测与识别技术研究[J].传感技术学报,2021,34(8):1131.
- [21] 田卉玄,杨瑞琦,邹慧琴,等.电子鼻与HS-GC-MS技术快速鉴别肉豆蔻霉变过程中气味变化及其物质基础[J].中国中药杂志,2021,46(22):5853.
- [22] 宁景苑,张飞翔,陈佳琪,等.基于多传感器信息融合的白芨霉变快速检测方法研究[J].传感技术学报,2020,33(5):650.
- [23] LIN Y,ZHANG F,LI L,et al.Identification of Panax notoginseng powder in different parts based on the electronic nose and time-domain feature extraction[J].J Electrochem Soc,2022,169(4):47510.
- [24] 高茜,向能军,沈宏林,等.固相微萃取和同时蒸馏萃取法分析黄精的挥发性成分[J].中国高新技术企业,2008(14):129.
- [25] 宋艺君,郭涛,高阳丽,等.GC-IMS法比较黄精不同炮制品特征气味物质差异[J].中国药学杂志,2022,57(16):1329.
- [26] LIU Q,ZHAO N,ZHOU D,et al.Discrimination and growth tracking of fungi contamination in peaches using electronic nose[J].Food Chem,2018,262:226.
- [27] 赵秋龙,杨沛文,钱大玮,等.不同加工干燥方法对白芍药材中化学成分的影响研究[J].中国中药杂志,2021,46(22):5839.
- [28] MOTA I,TEIXEIRA-SANTOS R,RUFO J C.Detection and identification of fungal species by electronic nose technology:a systematic review[J].Fungal Biol Rev,2021,37:59.
- [29] 费程浩,戴辉,苏杭,等.电子鼻技术的研究进展及其在中药行业中的应用[J].世界中医药,2019,14(2):257.
- 黄精
- 霉变
- 电子鼻
- 气味
- 快速判别模型
- 气味指纹图谱
Pollygonati Rhizoma - mildew
- electronic nose
- odor
- fast discriminant model
- odor fingerprint
- 于淑琳
- 拱健婷
- 李莉
- 关佳莉
- 翟恩爱
- 欧阳少琴
- 邹慧琴
- 闫永红
YU Shu-lin - GONG Jian-ting
- LI Li
- GUAN Jia-li
- ZHAI En-ai
- OUYANG Shao-qin
- ZOU Hui-qin
- YAN Yong-hong
- 于淑琳
- 拱健婷
- 李莉
- 关佳莉
- 翟恩爱
- 欧阳少琴
- 邹慧琴
- 闫永红
YU Shu-lin - GONG Jian-ting
- LI Li
- GUAN Jia-li
- ZHAI En-ai
- OUYANG Shao-qin
- ZOU Hui-qin
- YAN Yong-hong